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* Fig. 1: Synthetic shapes of C. elegans embryo cell (top) and A549 lung cancer cell (bottom) produced using the proposed method
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INTRODUCTION * Network Optimization

The auto-decoder is given a training set of N shape sequences. The training
procedure optimizes both the network parameters § and a latent code z. The loss

function thus consists of two components, L, distance between the inferred and
ground truth SDF values:
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 Methods allowing the synthesis of realistic cell shapes could help generate
raining data sets to improve cell tracking and segmentation in biomedical images
* In this work, we propose to use an efficient data representation for cell shapes,

evel sets of signed distance functions (SDFs) , Fo(.t.2). SDFaq () = || fo(@. 4. 2) — SDFrq. ()]
« We optimize a neural network as an implicit neural representation of the SDF recon U OLE, by 2/, O FEM ) = JOVE B 2 MBI
And the latent code regularization term:

valueatany pointin a 3D+time domain 1
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 The modelis conditioned on a latent code, thus allowing the synthesis of new and Leode(2,0) = o2 I=1l2
The overalllossthen becomes:
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unseen shape sequences

METHODOLOGY

* Shape Representation

e e doma EXPERIMENTAL RESULTS

o 7=[-1,1] temporal domain By giving new randomly generated latent codes to the auto-decoder, we produced

o M, 2D manifold embedded in Q at time ¢ € + new sequences of living shapes (see Fig. 1). For quantitative evaluation, we
computed quantile-quantile plots and boxplots showing distributions of selected
shape descriptors and p-values of the respective Kolmogorov-Smirnov tests on real
and generated cell shapes (top C. elegans, bottom lung cancer cells).
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For any pointx = (z,y, 2) € Q,the SDF 4, : © — R is defined as:

MiNg, e, || — ull2, x outside M,
SDFny, (x) = 40, x belonging to M,
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* The proposed model is simple, easy to train, and can be easily customized to
The SDF\, (x) is approximated using a multi-layer perceptron (MLP) fo. The produce adesired class of shapes
MLP takes as an input a coordinate vector x, time parameter ¢, and a latent  Owing to the implicit continuous representation, the model is able to produce
vector z initialized from a Gaussian distribution. Combining these terms results evolving shapes in virtually unlimited spatial and temporal resolution
in an auto-decoder [1] fo(x, ¢, ) that approximates the SDF of the manifold * The proposed method can be used for generating brand-new data sets, for data
M for an arbitrary t € 7, given latent vector z. augmentation, or forincreasing spatial and temporal resolution of existing data
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